A GENERALIZED SIMILARITY METHOD WITH A
UNIVERSAL EQUATION IN DIFFERENTIAL

FORM IN THE THEORY OF A NONSTATIONARY
BOUNDARY LAYER

O. N. Bushmarin and V. M. Stoletov UDC 532.526.2

The results of the integration of a "segment" of a universal equation in purely differential form
for a nonstationary laminar boundary layer are presented and analyzed.

A universal equation for a nonstationary laminar boundary layer in an incompressible liquid was obtained
in [1] without the use of any integral equations, i.e., in purely differential form. We write this equation and
the boundary conditions for the dimensionless stream function ¢ in the following form:
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The series of parameters introduced, which replace the longitudinal coordinate x and the time t, has the form
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where z =h’/v and k, n, I, m =0, 1, 2,. ..

With arbitrary functions U(x, t) and h(x, t) the parameters fix and gy, are independent variables. A con-
nection between them is established only in the second stage during the solution of a particular problem, when
a concrete scale is chosen for the transverse coordinate. In the boundary conditions (2) the function ¢4 (n) is
some self-similar solution. If as the latter one chooses the Blasius solution for a steady boundary layer at a
plate (¢, = @y), then the second line of the boundary conditions (2) will be
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TABLE 1, Values of the Coefficients in the Expansions (14)~(16)

" Parameters | : ,Fun:t:oml = Parameters : lFun:t:ons -

I 0,2205{ 2,5915 0,2998 o 6,8412 | 81,4026 | 6,2082
2 — —

f:f el e || A | 003 |-5.075 s,
glo 0,2501| —2,9399/—1,1349 gih | -0.1417 | 49975 | 1,9272
gn 0,7508| —7,3501|—2,4768 &, —1,4335 | 33,9696 | 10,1525
Frofor —4,52361 35,6690|—6,5571 Foo —.0,6952 | 6,1282 | 1,7965
F10€10 —2,6369| 42,0367 9,1004 [ —1,6086 | 9,2476 | 1,7298
Fro€01 ~10,5547] 130,3947| 25,0552 fu —4,4305 | 30,3642 | 7,2237
fuglo —1,4523| 11,9572 0,0072 || gy —0,2838 | 3,3350 | 1,2872
fugo —3,2034) 24,5847|—2,5644 l Zor —2,7367 | 23,3554 | 6,9863
gi08n | —0,8408] 24,0968 8,4151 an —1,7367 | 16,6760 | 5,618

The method of series expansion around values of the parameters corresponding to self-similar motion is
effective in the integration of a "segment" of the universal equation (1), when a limited number of parameters
are retained, for flows in a nearly self-similar boundary layer. In the present work such an expansion was
constructed near the solution ¢, of the Blasius problem. It is known that the characteristic fransverse scales
(6% is the displacement thickness and 6** is the thickness of momentum loss) in this problem can be expressed
by the general equation [2]
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where the constant takes the values 8= 3 at h® =6* and £ =0.4408 at h® = 5¥*, We note, however, that g), = 5 =
0.4408 in accordance with Eq.(6) and in the case when h® = 0.3836*, The latter circumstance makes it possible
to obtain the value of the normalizing constant B independent of the choice of a concrete scale h, In fact, when
the conditions (5) are observed Eq. (1) becomes the Blasius equation

de, , B gy =0,
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in which case it is convenient to take

B2 = B/2. 9

Setting B =0.4408, we obtain B =047. This value of the normalizing constant, which will be used in the integra-
tion of Eq. (1), corresponds to two scales, as shown below:

h = & _a_nd h = 0.383 &*. (10)

We note that the value of the normalizing constant could be taken as B =1, Then numerical coefficients differ-
ing from those obtained would appear in both the equalities (10). From this it follows that Eq. (1) is also "uni-
versal" relative to the choice of the scale h. This property will be used later in solving a particular problem.

We will seek the solution of (1) in the form of a "segment" of the power series
@ == @y () + 0, (0) Fr0+ 9, (M) for + D (M) &F5 + Do (M) Zos + 5 () Fiofor + -+ F P (M) Goz + Pa0 () G100 {11)
where
870 = Bu— 8= 81— B- (12)
Substituting the polynomial (11) into Eq. (1) and equating the coefficients to equal one-term combinations of

parameters, we find for ¢;(n) a system of ordinary differential equations, As a result of a numerical solution
of these equations on a computer, carried out once and for all with the boundary conditions:
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we obtained the values of the coefficients both for the polynomial (11) and for expansions of the following char—
acteristic functions:

Tl
EZ—@_:B g:z “=O=C0+C1fm+‘:zfm+“"f“z.:zoguv (14)
& 1 )
H*:_Z? s ( a:)d _Ho +H*f10+H°f01 B +H§ogu, (15)
o 1 dp g
H**= —_ X 1____ d — * ok H** & % .. % % .
5 B g‘ 071(. 611) m=Hy" +Hy fio+ H3 [+ +-- + Hio g0 (16)

The values of the coefficients to the parameters and of their combinations in the expansions (14)-(16) are given
in Table 1.

An analysis of the functions obtained made it possible to determine the character of the effect of the
parameters on some properties of a nonstationary boundary layer and, in particular, on the value of the re-
duced surface friction and the value of the separation abscissa. The dependences of these characteristics on
the parameters fy4, f3;, and gy revealed in [3] were confirmed in the solution under consideration. An origi-
nal result was obtained in an analysis of the variation of gf§, which reflects the past history of the flow in the
boundary layer. It follows from Fig. 1 that the effect of this parameter shows up mainly in the diffuse region
with f;, < 0. With an increase in the positive value of gf,, which corresponds to an increase in the parameter
gy =Uz', the friction in the boundary layer increases and separation is accordingly protracted. An analysis
of the effect of £y, £33, f115 820, Bo2» and gy showed a tendency opposite to that just presented.

In solving a concrete problem with a given velocity distribution U(x, t) at the outer limit of the boundary
layer it is necessary to determine the quantity z(x, t) after which the values of the parameters become known
and, consequently, the velocity profiles and the surface friction in the boundary layer become known as func-
tions of the longitudinal coordinate and time in accordance with the solution of the universal equation. The in-
tegral momentum equation, reduced to parametric form with an arbitrary scale h, is an identity and therefore
cannot be used to determine the quantity z. A concrete assignment of the scale in one of the forms (10) leads
to the fact that some of the terms drop out of the integral momentum equation and it becomes the equation from
which z can be determined. Thus, with h =5** we have

2H* OH* Uz Uz

* d *) ¢ =0, :
T U B S U@ Y an
while with h = 0,3836* we have
1 . Uz a , ( 1 )
1 [z Uz H* LU o F* —r=0. 18
0.383 (2+ U)+ + Uz % 4 vz (oA T 0383 ¢ 18
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Fig. 2. Dependence of reduced coefficient of friction
¢ on exponent b, (All quantities are dimensionless.)

The functionals £, H*, and H** enfering into the equations were determined from Eqgs. (14)-(16) while the de-
rivatives 9H*9t and 9H*¥/0x were calculated with allowance for the recurrent relations of [1]. Thus, to deter-
mine z(x, t) we can use either of the equations (17) or (18) obtained, which are differential equations in partial
derivatives, with their order being determined by the numbers of parameters giym contained in the expansions
of H*, H¥*, and { for the adopted approximation. Being confined to the parameters g;; and gy, we obtain first-
order differential equations, which we will later integrate, We note that the discarded terms, which contain
higher-order derivatives, require special investigation, generally speaking.

Besides the method presented above, which is standard, one can use the expansions (15) and (16} of the
characteristic functions for the determination of z(x, t), equating the polynomials obtained in the approxima-
tion under consideration to certain constants in accordance with the chosen scales, For example, being con-
fined to five terms of the expansion, with h =6%* we can write

He = 1 = HY* 4+ HE*U'z 4 HE* 9= £ H* (U7 —B)+ HI*, (19)

while with h =0,3830¥

L o6l = H 4 HIU2+ HE % L HY U7 —B) + Hiz.

0.383

H*= 20)

As an example of the calculation, let us consider the problem of the growth of the boundary at a plate,
infinite in both directions, moving in its own plane. Let the velocity at the boundary-layer limit vary with time
by the power law

U =at’, 21
where a and b are constants (@ > 0). We will seek the quantity z in the form
z = h(b)t. (22)

Substituting the expressions (21) and (22) into one of the equations (17)-(20), we obtain an algebraic equation
for the calculation of A(b). Using (21), we will have gy = A(b), f3; =bA(b), and £ =b(b — 1)A(b); the remaining
parameters are equal fo zero. The results of the calculation in the form of the reduced friction ¢ as a function
of the exponent b are presented in Fig. 2. Here { =(Tw/uU)vVt=t/ VM b). The exact solution [4] is shown by the
solid curve 3. Using the arbitrariness in the choice of the transverse scale, as well as the equations for find-
ing z(x, t), we were able to find an approximation solution by four methods. Curves 1 and 5 were obtained with
h = 6** while curves 2 and 4 were obtained with h =0,3836%, Curves 2 and 5 were found using the momentum
equations (17) and (18), respectively, to find z, while curves 1 and 4 were found using {19) and (20), respec~
tively, for this. It should be noted that with b > 0 the solution was obtained in a quadratic approximation while
with b < 0 it was obtained in a linear approximation, The latter is explained by the fact that in this case the
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quadratic approximation led to the appearance of complex solutions of the quadratic equation relative to A(b),
since a negative difference of two quantities close in absolute value was formed under the square root, It
would be possible to avoid this by allowing for the cubic terms in the expansion of the unknown functions. It
is seen from an examination of the graphs that the solution using the displacement thickness as the scale gives
the best approximation to the exact solution. "

The method presented in the article cannot be used to calculate a nonsteady boundary layer at a body with
a sharp leading edge, since the solutions of such problems [5] depend also on the dimensionless complex T =
Ut/x. Moreover, as a simple analysis shows, the use of the method for periodic boundary layers is possible
only with small Strouhal numbers.

NOTATION
X, ¥ are the longitudinal and transverse coordinates in the boundary layer;
t is the time; _ _
1 is the dimensionless transverse coordinate;
U, t) is the velocity at outer limit of boundary layer;
P is the stream function;
© is the dimensionless stream function;
u, v are the projections of velocity in boundary layer onto x and y axes, respectively;
p is the density of liquid;
M, v are the coefficients of dynamic and kinematic viscosity;
h ~ is the scale of transverse coordinate in boundary layer;
z =h¥v, H¥
and H** are the characteristic functions;
o* is the displacement thickness;
o is the thickness of momentum loss;
Tw is the stress of surface friction;
L is the reduced coefficient of friction;
B is the normalizing factor;
fkns 8im are the dimensionless parameters;
a, b are the constants.
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