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The r e su l t s  of the integrat ion of a " segment"  of a un iversa l  equation in pure ly  di f ferent ia l  f o r m  
for  a nonsta t ionary  l am i na r  boundary l aye r  a re  p resen ted  and analyzed. 

A un ive r sa l  equation for  a nonsta t ionary  l a m i n a r  boundary l aye r  in an incompress ib l e  liquid was obtained 
in [1] without the use of any in tegra l  equat ions ,  i .e.,  in pure ly  d i f ferent ia l  fo rm.  We wr i te  this equation and 
the boundary conditions for  the d imens ion less  s t r e a m  function ~ in the following fo rm:  
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The s e r i e s  of p a r a m e t e r s  introduced,  which rep lace  the longitudinal coordinate x and the t ime t,  has  the f o r m  
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where  z =h2/v and k, n, l ,  m =0,  1, 2, . . . .  

With a r b i t r a r y  functions U(x, t) and h(x, t) the p a r a m e t e r s  fkn and g/m a re  independent va r i ab les .  A con-  
nection between them is es tab l i shed  only in the sec.ond stage during the solution of a pa r t i cu la r  p rob l em,  when 
a concre te  scale  is chosen for  the t r a n s v e r s e  coordinate .  In the boundary  conditions (2) the function ~a(~) is 
some s e l f - s i m i l a r  solution. If as the l a t t e r  one chooses  the Blasius  solution for  a s teady boundary l a y e r  at  a 
plate (~a = ~~ then the second line of the boundary conditions (2) will be 

r = % (~1) at fk. ~ O, g~o ---- I 3 = const, g~0 = 0 (l = 2, 3 . . . . .  ) /. (5) 

g~m=0 ( I = 0 ,  1, 2 . . . . .  ; m = l ,  2, 3 . . . .  ) J 
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T A B L E  1. Values  of  the Coeff ic ien ts  in the Expans ions  (14)-(16) 

Parameters 

l 

50 
[ol 
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gox 
hofol 
t~og~ o 
hogo~ 
f olg~ o 
fo,gol 
g~ ogot 

0,2205 
2,3236 
1,2762 
0,2501 
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/4** 
-][ Parameters hlncffom 

H* 

2,5915 
--12,3480 
--3,5069 
--2,9399[ 
--7,3501 
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--3,29341 24,58471 
--0,8498[ 24,9968[ 
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8,4151 

r~o 
fo, 

I ho 

fu 
g2o 

go2 
glt 

Functions 

H* ] H** 

6,8412 81,4026 6,2082 

0,9309 I--5,9575 --3,9436 

--0,1417 4,9975 ] 1,9272 

--1,4335 33,9696 10,1525 
--0,6952 6.1282 1,7965 
--1,6086 t 9,2476 1,7298 
--4,4305 I 30,3642 7,2237 
--0,2838 I 3,3350 I 1,2872 
--2,7367 23,3554 ] 6,9863 
--I ,7367 16,676C 5,6188 

The  method  of s e r i e s  expans ion  a round  va lues  of the p a r a m e t e r s  c o r r e s p o n d i n g  to s e l f - s i m i l a r  mot ion  is 
e f fec t ive  in the in t eg ra t ion  of  a " s e g m e n t "  of the u n i v e r s a l  equat ion (1), when a l imi ted  number  of p a r a m e t e r s  
a r e  r e t a ined ,  f o r  f lows in a n e a r l y  s e l f - s i m i l a r  boundary  l aye r .  In the p r e s e n t  w o r k  such an expans ion  was  
c o n s t r u c t e d  n e a r  the solut ion 90 of  the Blas ius  p r o b l e m .  It  is  known that  the c h a r a c t e r i s t i c  t r a n s v e r s e  s c a l e s  
(6" is the d i s p l a c e m e n t  th i ckness  and 6"* is the th i ckness  of m o m e n t u m  loss)  in this  p r o b l e m  can be e x p r e s s e d  
by the gene ra l  equat ion  [2] 
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~X 
u~ (6) 

F "  

z ~ = (h~ I~ x 

where  the cons tan t  takes  the va lues  fl = 3 at  h ~ = 6" and ~ = 0.4408 at  h ~ = 6"*. 
0.4408 in a c c o r d a n c e  with Eq.(6) and in the case  when h d = 0.3836*. The l a t t e r  c i r c u m s t a n c e  m a k e s  it poss ib le  
to obtain the value of  the n o r m a l i z i n g  cons tan t  B independent  of  the choice  of a conc re t e  sca le  h. In f ac t ,  when 
the condi t ions  (5) a r e  o b s e r v e d  Eq, (1) b e c o m e s  the Blas ius  equat ion 

daq)_____~o _.~ ~ d2~oo 
a~3 ~ h T  % - ~  = o, (8) 

in which  c a s e  it  is  convenien t  to take 

(7) 

We note ,  h o w e v e r ,  tha t  g~o =/# = 

B~ - f , / 2 .  O) 

This  value  of the n o r m a l i z i n g  cons tan t ,  which wil l  be used  in the i n t e g r a -  Sett ing fl = 0.4408, we obtain B = 0.47. 
t ion of Eq. (1), c o r r e s p o n d s  to two s c a l e s ,  as  shown below:  

h = 6"* and h ~ 0.383 5*. (10) 

We note tha t  the value  of the n o r m a l i z i n g  cons tan t  could be taken as B = 1. Then n u m e r i c a l  coef f ic ien ts  d i f f e r -  
ing f r o m  those  obta ined would appea r  in both the equa l i t i e s  (10). F r o m  this  it fol lows that  Eq. (1) is a l so  "un i -  
v e r s a l "  r e l a t ive  to the choice  of  the sca le  h. This  p r o p e r t y  wil l  be used  l a t e r  in solving a p a r t i c u l a r  p rob lem.  

We wil l  s e e k  the solut ion of (1) in the f o r m  of a " s e g m e n t "  of the power  s e r i e s  

cp = % (~1) ~- r (q) f~o -t- % (rl) fo, + % (Y) g?o + % (vl) go~ + % (vl)/.jot + "'" + %9 (q) go2 § %0 (~1) g,,, (11) 

w h e r e  

g~o = g ,o- -g~  glo--~- (12) 

Subst i tut ing the po lynomia l  (11) into Eq. (1) and equa t ing  the coef f ic ien ts  to equal  o n e - t e r m  combina t ions  of 
p a r a m e t e r s ,  we find for  ~i07) a s y s t e m  of o r d i n a r y  d i f fe ren t ia l  equat ions .  As  a r e s u l t  of a n u m e r i c a l  solut ion 
of  these  equa t ions  on a c o m p u t e r ,  c a r r i e d  out once and fo r  all  with the boundary  condi t ions:  
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Fig. 1. Dependence of reduced coeff icient  of f r ic t ion  
on the p a r a m e t e r s  flo and glo; fol =f20 =f02 =fl l  =gol = 
g20 = go2 = 0. 
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(13) 

we obtained the va lues  of the coeff ic ients  both fo r  the polynomial  (11) and for  expansions  of the following c h a r -  
a c t e r i s t i c  functions:  

H** 
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The va lues  of the coeff ic ients  to the p a r a m e t e r s  and of the i r  combinat ions in the expansions  (14)-(16) a re  given 
in Table  1. 

An ana lys i s  of the functions obtained made it  poss ib le  to de te rmine  the c h a r a c t e r  of the ef fec t  of the 
p a r a m e t e r s  on some p r o p e r t i e s  of a nons ta t ionary  boundary l aye r  and, in p a r t i c u l a r ,  on the value of the r e -  
duced su r f ace  f r ic t ion  and the value of the sepa ra t ion  a b s c i s s a .  The dependences of these c h a r a c t e r i s t i c s  on 
the p a r a m e t e r s  fl0, f01, and g01 r evea led  in [3] we re  conf i rmed  in the solution under  considerat ion.  An o r i g i -  
nal r e su l t  was  obtained in an ana lys i s  of the va r i a t ion  of gl~, which r e f l ec t s  the pas t  h i s to ry  of the flow in the 
boundary l aye r .  I t  follows f r o m  Fig. 1 that  the e f fec t  of this p a r a m e t e r  shows up mainly  in the diffuse region 
with fi0 < 0. With an i nc rea se  in the pos i t ive  value of g~0, which co r r e sponds  to an i nc rea se  in the p a r a m e t e r  
gl0 = Uz ' ,  the f r ic t ion  in the boundary l aye r  i n c r e a s e s  and separa t ion  is accordingly  p ro t rac ted .  An analys is  
of the e f fec t  of f20, f02, f i I ,  g20, g02, and gll showed a tendency opposite to that  jus t  p resen ted .  

In solving a concre te  p r o b l e m  with a given veloci ty  dis t r ibut ion U(x, t) at  the outer  l imi t  of the boundary 
l aye r  it  is n e c e s s a r y  to de t e rmine  the quantity z(x, t) a f t e r  which the values  of the p a r a m e t e r s  become known 
and, consequent ly,  the veloci ty  p rof i l es  and the su r face  f r ic t ion  in the boundary l aye r  become known as func-  
t ions of the longitudinal coordinate  and t ime  in accordance  with the solution of the un iversa l  equation. The in-  
t eg r a l  momen tum equation,  reduced  to p a r a m e t r i c  f o r m  with an a r b i t r a r y  scale  h,  is an identity and the re fo re  
cannot be used  to de te rmine  the quantity z. A concrete  a s s ignment  of the scale  in one of the f o r m s  (I0) leads 
to the fact  that  some  of the t e r m s  drop out of the in tegra l  momen tum equation and it becomes  the equation f r o m  
which z can be de te rmined .  Thus ,  with h = 6"* we have 

zH* OH* Oz Uz" 2 + z ~  -{----u~H*+----~-+U'z(2+H*)--~=O, (17) 

while with h = 0.3835* we have 

( + )  ( , )  1 Uz Uz' H** "b Uz + U'z 2 H * *  - -  ~ = 0 .  ( 1 8 )  
0.383 + - - -0 -  + ~ ~ ~- 0.383 
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Fig. 2. Dependence of reduced coefficient of fr ict ion 
on exponent b. (All quantities are dimensionless.)  

The functionals ~, H*, and H** entering into the equations were determined f rom Eqs. (14)-(16) while the de-  
r ivat ives  aH*/St and t}H**/Sx were calculated with allowance for the r e c u r r e n t  relat ions of [1]. Thus,  to de te r -  
mine z(x, t) we can use ei ther  of the equations (17) or  (18) obtained, which are differential equations in part ia l  
der ivat ives ,  with their  o rder  be ingdetermined by the numbers  of pa r ame te r s  glm contained in the expansions 
of H*, H**, and ~ for the adopted approximation. Being confined to the pa rame te r s  gl0 and g01, we obtain f i r s t -  
o rde r  differential  equations,  which we will la ter  integrate.  We note that the d iscarded t e r m s ,  which contain 
h ighe r -o rde r  der iva t ives ,  require  special  investigation, general ly speaking. 

Besides the method presented above, which is s tandard,  one can use the expansions (15) and (16) of the 
cha rac te r i s t i c  functions for  the determination of z(x, t), equating the polynomials  obtained in the approxima-  
tion under considerat ion to cer tain constants in accordance with the chosen scales.  F o r  example,  being con- 
fined to five t e rms  of the expansion, with h = 5** we can wri te  

H**= I = H ~ ,  q_H~{,U,z_k H** Uz _kH** (Uz, ~ )q_H~,~  ' (19) 2 - E -  

while with h = 0.3835* 

H* = 1 0z (2 0) 
- -  = , 2 --0- + H3 (Uz'--~) + If* z. 0.383 2.61 = H~ -< H~{ U'z + H* * 

As an example of the calculation, let us consider  the problem of the growth of the boundary at a plate,  
infinite in both d i rec t ions ,  moving in its own plane. Let  the velocity at the boundary- layer  l imit  va ry  with time 
by the power law 

U : at b, (21) 

where a and b are  constants (a > 0). We will seek the quantity z in the form 

z = s (b) t. (22) 

Substituting the express ions  (21) and (22) into one of the equations (17)-(20), we obtain an algebraic  equation 
for  the calculation of ~t(b). Using (21), we will have g01 = k(b), f01 =bk(b), and f02 =b(b - 1)k(b); the remaining 
pa rame te r s  are  equal to zero.  The resul ts  of the calculation in the form of the reduced frict ion ~ as a function 
of the exponent b are  presented in Fig. 2. Here ~ = ( ' r w / p U ) f - ~ ' = ~ / t - ~ .  The  exact solution [4] is shownbythe 
solid curve 3. Using the a rb i t r a r iness  in the choice of the t r ansver se  scale ,  as well as the equations for find- 
ing z(x, t), we were  able to find an approximation solution by four methods. Curves 1 and 5 were obtained with 
h = 5** while curves  2 and 4 were obtained with h = 0.3835*. Curves 2 and 5 were found using the momentum 
equations (17) and (18), respec t ive ly ,  to find z, while curves 1 and 4 were found using (19) and (20), r e spec -  
t ively,  for this. It should be noted that with b > 0 the solution was obtained in a quadrat ic  approximation while 
with b < 0 it was obtained in a l inear  approximation. The lat ter  is explained by the fact  that in this case the 
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quadratic approximation led to the appearance of complex solutions of the quadratic equation relative to k(b), 
since a negative difference of two quantities close in absolute value was formed under the square root. It 
would be possible to avoid this by allowing for the cubic terms in the expansion of the unknown functions. It 
is seen from an examination of the graphs that the solution using the displacement thickness as the scale gives 
the best approximation to the exact solution. 

The method presented in the article cannot be used to calculate a nonsteady boundary layer  at a body with 
a sharp leading edge, since the solutions of such problems [5] depend also on the dimensionless complex r = 
Ut/x. Moreover,  as a simple analysis shows, the use of the method for periodic boundary layers  is possible 
only with small Strouhal numbers. 
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N O T A T I O N  

are the longitudinal and t ransverse  coordinates in the boundary layer;  
is the time; 
is the dimensionless t ransverse  coordinate; 
is the velocity at outer limit of boundary layer ;  
is the s t ream function; 
is the dimensionless s t ream function; 
are the projections of velocity in boundary layer onto x and y axes, respectively; 
is the density of liquid; 
are  the coefficients of dynamic and kinematic viscosity; 
is the scale of t ransverse  coordinate in boundary layer;  

are the character is t ic  functions; 
is the displacement thickness; 
is the thickness of momentum loss; 
is the s t ress  of surface friction; 
is the reduced coefficient of friction; 
is the normalizing factor;  
are the dimensionless parameters ;  
are  the constants. 

1. 

2. 
3. 

4. 

5. 

L I T E R A T U R E  C I T E D  

O. N. Bushmarin, "A parametr ic  method of calculating a nonsteady boundary layer in an incompressible 
liquid with suction or injection," Inzh. -Fiz.  Zh., 31, No. 4 (1976). 
L. G. Loitsyanskii,  Fluid and Gas Mechanics [in Russian], Nauka, Moscow (1973). 
O. N. Bushmarin and Yu. V. Saraev, "The parametr ic  method in the theory of a nonstationary boundary 
layer , "  Inzh.-Fiz .  Zh., 27, No. 1 (1974). 
L. A. Rozin, "An approximate method of integrating equations of a nonstationary boundary layer in an 
incompressible liquid," PriM. Mat. Mekh., 21, No.5 (1957). 
K. Stewartson, "On the impulsive motion of a fiat plate in a viscous fluid," J. Mech. Appl. Math., 4, 
No. 6, 2 (1951). 

192 


